Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 724
Filtrar
1.
Cell Rep Med ; 5(3): 101462, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38508147

RESUMO

Selenoprotein N-related myopathy (SEPN1-RM) is a genetic disease that causes muscle weakness and respiratory failure. Germani et al.1 demonstrate that diaphragm weakness in SEPN1-RM is prevented by the inhibition of ER stress or ERO1 oxidoreductase regulated by transcription factor CHOP.


Assuntos
Doenças Musculares , Insuficiência Respiratória , Humanos , Proteínas Musculares/genética , Selenoproteínas/genética , Selenoproteínas/metabolismo , Doenças Musculares/genética , Doenças Musculares/terapia , Estresse Oxidativo/genética
2.
Proc Natl Acad Sci U S A ; 121(11): e2321700121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38442159

RESUMO

Ribosomes are often used in synthetic biology as a tool to produce desired proteins with enhanced properties or entirely new functions. However, repurposing ribosomes for producing designer proteins is challenging due to the limited number of engineering solutions available to alter the natural activity of these enzymes. In this study, we advance ribosome engineering by describing a novel strategy based on functional fusions of ribosomal RNA (rRNA) with messenger RNA (mRNA). Specifically, we create an mRNA-ribosome fusion called RiboU, where the 16S rRNA is covalently attached to selenocysteine insertion sequence (SECIS), a regulatory RNA element found in mRNAs encoding selenoproteins. When SECIS sequences are present in natural mRNAs, they instruct ribosomes to decode UGA codons as selenocysteine (Sec, U) codons instead of interpreting them as stop codons. This enables ribosomes to insert Sec into the growing polypeptide chain at the appropriate site. Our work demonstrates that the SECIS sequence maintains its functionality even when inserted into the ribosome structure. As a result, the engineered ribosomes RiboU interpret UAG codons as Sec codons, allowing easy and site-specific insertion of Sec in a protein of interest with no further modification to the natural machinery of protein synthesis. To validate this approach, we use RiboU ribosomes to produce three functional target selenoproteins in Escherichia coli by site-specifically inserting Sec into the proteins' active sites. Overall, our work demonstrates the feasibility of creating functional mRNA-rRNA fusions as a strategy for ribosome engineering, providing a novel tool for producing Sec-containing proteins in live bacterial cells.


Assuntos
Magnoliopsida , Selenocisteína , RNA Mensageiro/genética , RNA Ribossômico 16S , Selenoproteínas/genética , Ribossomos/genética , Códon de Terminação/genética , Escherichia coli/genética
3.
Genome Biol Evol ; 16(3)2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38447079

RESUMO

Selenocysteine, the 21st amino acid specified by the genetic code, is a rare selenium-containing residue found in the catalytic site of selenoprotein oxidoreductases. Selenocysteine is analogous to the common cysteine amino acid, but its selenium atom offers physical-chemical properties not provided by the corresponding sulfur atom in cysteine. Catalytic sites with selenocysteine in selenoproteins of vertebrates are under strong purifying selection, but one enzyme, glutathione peroxidase 6 (GPX6), independently exchanged selenocysteine for cysteine <100 million years ago in several mammalian lineages. We reconstructed and assayed these ancient enzymes before and after selenocysteine was lost and up to today and found them to have lost their classic ability to reduce hydroperoxides using glutathione. This loss of function, however, was accompanied by additional amino acid changes in the catalytic domain, with protein sites concertedly changing under positive selection across distant lineages abandoning selenocysteine in glutathione peroxidase 6. This demonstrates a narrow evolutionary range in maintaining fitness when sulfur in cysteine impairs the catalytic activity of this protein, with pleiotropy and epistasis likely driving the observed convergent evolution. We propose that the mutations shared across distinct lineages may trigger enzymatic properties beyond those in classic glutathione peroxidases, rather than simply recovering catalytic rate. These findings are an unusual example of adaptive convergence across mammalian selenoproteins, with the evolutionary signatures possibly representing the evolution of novel oxidoreductase functions.


Assuntos
Selênio , Selenocisteína , Animais , Selenocisteína/genética , Selenocisteína/química , Selenocisteína/metabolismo , Cisteína/genética , Cisteína/metabolismo , Selênio/metabolismo , Selenoproteínas/genética , Selenoproteínas/química , Selenoproteínas/metabolismo , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Aminoácidos , Glutationa , Enxofre , Mamíferos/genética , Mamíferos/metabolismo
4.
Environ Toxicol Pharmacol ; 107: 104430, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38552755

RESUMO

The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) continues to increase due in part to the obesity epidemic and to environmental exposures to metabolism disrupting chemicals. A single gavage exposure of male mice to Aroclor 1260 (Ar1260), an environmentally relevant mixture of non-dioxin-like polychlorinated biphenyls (PCBs), resulted in steatohepatitis and altered RNA modifications in selenocysteine tRNA 34 weeks post-exposure. Unbiased approaches identified the liver proteome, selenoproteins, and levels of 25 metals. Ar1260 altered the abundance of 128 proteins. Enrichment analysis of the liver Ar1260 proteome included glutathione metabolism and translation of selenoproteins. Hepatic glutathione peroxidase 4 (GPX4) and Selenoprotein O (SELENOO) were increased and Selenoprotein F (SELENOF), Selenoprotein S (SELENOS), Selenium binding protein 2 (SELENBP2) were decreased with Ar1260 exposure. Increased copper, selenium (Se), and zinc and reduced iron levels were detected. These data demonstrate that Ar1260 exposure alters the (seleno)proteome, Se, and metals in MASLD-associated pathways.


Assuntos
Arocloros , Fígado Gorduroso , Selênio , Masculino , Camundongos , Animais , Proteoma/metabolismo , Glutationa Peroxidase/metabolismo , Selenoproteínas/genética , Selenoproteínas/metabolismo , Fígado/metabolismo
5.
Int J Mol Sci ; 25(3)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38338681

RESUMO

Selenium has been proven to influence several biological functions, showing to be an essential micronutrient. The functional studies demonstrated the benefits of a balanced selenium diet and how its deficiency is associated with diverse diseases, especially cancer and viral diseases. Selenium is an antioxidant, protecting the cells from damage, enhancing the immune system response, preventing cardiovascular diseases, and decreasing inflammation. Selenium can be found in its inorganic and organic forms, and its main form in the cells is the selenocysteine incorporated into selenoproteins. Twenty-five selenoproteins are currently known in the human genome: glutathione peroxidases, iodothyronine deiodinases, thioredoxin reductases, selenophosphate synthetase, and other selenoproteins. These proteins lead to the transport of selenium in the tissues, protect against oxidative damage, contribute to the stress of the endoplasmic reticulum, and control inflammation. Due to these functions, there has been growing interest in the influence of polymorphisms in selenoproteins in the last two decades. Selenoproteins' gene polymorphisms may influence protein structure and selenium concentration in plasma and its absorption and even impact the development and progression of certain diseases. This review aims to elucidate the role of selenoproteins and understand how their gene polymorphisms can influence the balance of physiological conditions. In this polymorphism review, we focused on the PubMed database, with only articles published in English between 2003 and 2023. The keywords used were "selenoprotein" and "polymorphism". Articles that did not approach the theme subject were excluded. Selenium and selenoproteins still have a long way to go in molecular studies, and several works demonstrated the importance of their polymorphisms as a risk biomarker for some diseases, especially cardiovascular and thyroid diseases, diabetes, and cancer.


Assuntos
Neoplasias , Selênio , Humanos , Selênio/metabolismo , Selenoproteínas/genética , Selenoproteínas/metabolismo , Inflamação/genética , Neoplasias/genética , Biomarcadores
6.
Redox Biol ; 70: 103064, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38320455

RESUMO

Amyloid-beta (Aß) is a key factor in the onset and progression of Alzheimer's disease (AD). Selenium (Se) compounds show promise in AD treatment. Here, we revealed that selenoprotein K (SELENOK), a selenoprotein involved in immune regulation and potentially related to AD pathology, plays a critical role in microglial immune response, migration, and phagocytosis. In vivo and in vitro studies corroborated that SELENOK deficiency inhibits microglial Aß phagocytosis, exacerbating cognitive deficits in 5xFAD mice, which are reversed by SELENOK overexpression. Mechanistically, SELENOK is involved in CD36 palmitoylation through DHHC6, regulating CD36 localization to microglial plasma membranes and thus impacting Aß phagocytosis. CD36 palmitoylation was reduced in the brains of patients and mice with AD. Se supplementation promoted SELENOK expression and CD36 palmitoylation, enhancing microglial Aß phagocytosis and mitigating AD progression. We have identified the regulatory mechanisms from Se-dependent selenoproteins to Aß pathology, providing novel insights into potential therapeutic strategies involving Se and selenoproteins.


Assuntos
Doença de Alzheimer , Antígenos CD36 , Microglia , Selenoproteínas , Animais , Humanos , Camundongos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Modelos Animais de Doenças , Lipoilação , Camundongos Transgênicos , Microglia/metabolismo , Fagocitose , Selenoproteínas/genética , Selenoproteínas/metabolismo , Antígenos CD36/metabolismo
7.
Ecotoxicol Environ Saf ; 272: 116028, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38310824

RESUMO

Extensive application of lead (Pb) brought about environmental pollution and toxic reactions of organisms. Selenium (Se) has the effect of antagonizing Pb poisoning in humans and animals. However, it is still unclear how Pb causes brainstem toxicity. In the present study, we wanted to investigate whether Se can alleviate Pb toxicity in chicken brainstems by reducing apoptosis. One hundred and eighty chickens were randomly divided into four groups, namely the control group, the Se group, the Pb group, and the Se/Pb group. Morphological examination, ultrastructural observation, relative mRNA expressions of genes on heat shock proteins (HSPs); selenoproteins; inflammatory cytokines; and apoptosis-related factors were investigated. The results showed that Pb exposure led to tissue damage and apoptosis in chicken brainstems. Furthermore, an atypical expression of HSPs (HSP27, HSP40, HSP60, HSP70, and HSP90); selenoprotein family glutathione peroxidase (GPx) 1, GPx2, GPx3, and GPx4), thioredoxin reductases (Txnrd) (Txnrd1, Txnrd2, and Txnrd3), dio selenoprotein famliy (diodothyronine deiodinases (Dio)1, Dio2, and Dio3), as well as other selenoproteins (selenoprotein (Sel)T, SelK, SelS, SelH, SelM, SelU, SelI, SelO, Selpb, selenoprotein n1 (Sepn1), Sepp1, Sepx1, Sepw1, 15-kDa selenoprotein (Sep15), and selenophosphate synthetases 2 (SPS2)); inflammatory cytokines (Interleukin 2 (IL-2), IL-4, IL-6, IL-12ß, IL-17, and Interferon-γ (IFN-γ)); and apoptosis-related genes (B-cell lymphoma-2 (Bcl-2), tumor protein 53 (p53), Bcl-2 Associated X (Bax), Cytochrome c (Cyt c), and Caspase-3) were identified. An inflammatory reaction and apoptosis were induced in chicken brainstems after exposure to Pb. Se alleviated the abnormal expression of HSPs, selenoproteins, inflammatory cytokines, and apoptosis in brainstem tissues of chickens treated with Pb. The results indicated that HSPs, selenoproteins, inflammatory, and apoptosis were involved in Se-resisted Pb poisoning. Overall, Se had resistance effect against Pb poisoning, and can be act as an antidote for Pb poisoning in animals.


Assuntos
Selênio , Humanos , Animais , Selênio/farmacologia , Galinhas/metabolismo , Citocinas/genética , Chumbo , Selenoproteínas/genética , Selenoproteínas/metabolismo , Proteínas de Choque Térmico/genética , Proteínas Proto-Oncogênicas c-bcl-2
8.
Redox Biol ; 70: 103063, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38316067

RESUMO

Vascular diseases, a leading cause of death in human, are strongly associated with pathological damage to blood vessels. The selenoprotein (Sel) have been reported to play important roles in vascular disease. However, the role of SelO in vascular disease has not been conclusively investigated. The present experiment was to investigate the regulatory mechanism of the effect of SelO on the permeability of vascular endothelial. The H.E staining, FITC-Dextran staining, Dil-AC-LDL staining and FITC-WGA staining showed that vascular structure was damaged, and intercellular junctions were disrupted with selenium (Se)-deficient. Immunohistochemistry, qPCR and Western blot revealed decreased expression of the adhesion plaque proteins vinculin, talin and paxillin, decreased expression of the vascular connectivity effector molecules connexin, claudin-1 and E-cadherin and increased expression of JAM-A and N-cadherin, as well as decreased expression of the ZO-1 signaling pathways ZO-1, Rock, rhoGEF, cingulin and MLC-2. In a screening of 24 Sel present in mice, SelO showed the most pronounced changes in vascular tissues, and a possible association between SelO and vascular intercellular junction effectors was determined using IBM SPSS Statistics 25. Silencing of SelO, vascular endothelial intercellular junction adverse effects present. The regulatory relationship between SelO and vascular endothelial intercellular junctions was determined. The results showed that Se deficiency lead to increased vascular endothelial permeability and vascular tissue damage by decreasing SelO expression, suggesting a possible role for SelO in regulating vascular endothelial permeability.


Assuntos
Selênio , Doenças Vasculares , Humanos , Animais , Camundongos , Células Endoteliais/metabolismo , Selênio/metabolismo , Doenças Vasculares/patologia , Permeabilidade , Selenoproteínas/genética , Selenoproteínas/metabolismo
9.
Biol Trace Elem Res ; 202(1): 182-189, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37093510

RESUMO

The trace element selenium (Se) plays a key role in development and various physiological processes, mainly through its transformation into selenoproteins. To investigate the developmental patterns of Se content and expression of selenoproteins, the liver and longissimus dorsi (LD) muscle of Duroc pigs were collected at 1, 21, 80, and 185 days of age (7 pigs each age) for the determination of Se content, mRNA expression of selenoproteins, and concentrations of glutathione peroxidase (GPX), thioredoxin reductase (TrxR or TXNRD), and selenoprotein P (SELP). The results showed that age significantly affected the expression of GPX1, GPX2, GPX3, TXNRD1, TXNRD2, TXNRD3, iodothyronine deiodinases 2 (DIO2), DIO3, SELF, SELH, SELM, SELP, SELS, SELW, and selenophosphate synthetase2 (SPS2) in the liver, as well as GPX3, GPX4, TXNRD1, TXNRD2, DIO2, DIO3, SELF, SELN, SELP, SELR, SELS, and SELW in the LD muscle of Duroc pigs. The concentrations of GPX, TrxR, and SELP showed an increasing trend with age, and they were positively correlated with Se content at 1, 21, and 185 days of age and negatively correlated at 80 days of age, both in the liver and LD muscle. The Se content decreased at the age of 80 days, especially in the LD muscle. In summary, our study revealed developmental changes in Se content and expression of selenoproteins in the liver and LD muscle of Duroc pigs at different growth stages, which provided a theoretical basis for further study of Se nutrition and functions of selenoproteins.


Assuntos
Selênio , Animais , Suínos , Galinhas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Selenoproteínas/genética , Selenoproteínas/metabolismo , Fígado/metabolismo , Selenoproteína P , Glutationa Peroxidase , Músculo Esquelético/metabolismo
10.
J Agric Food Chem ; 72(1): 284-299, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38109331

RESUMO

microRNA (miRNA) controls the post-transcriptional translation of mRNA to affect the expression of many genes participating in functional interaction pathways. Selenoproteins are characterized by their antioxidant activity, wherein selenoprotein T (SelT) is an essential membrane-bound selenoprotein serving as a guardian of intracellular homeostasis. During muscle development and regeneration, myoblasts enter the cell cycle and rapidly proliferate. However, the role of SelT in muscle development and selenium (Se) deficiency-induced muscle damage remains poorly investigated. This study established Se deficient broiler models, chicken embryos models, and cultured chicken primary myoblasts in vitro. We showed that Se deficiency induced skeletal muscle damage in broilers, promoted miR-365-3p expression, and downregulated the level of SelT, significantly. The absence of SelT led to the accumulation of mitochondrial superoxide and downregulated mitochondrial dynamics gene expression, which, in turn, induced the disruption of mitochondria potential and blocked the oxidative phosphorylation (OXPHOS) process. Limited ATP production rate caused by mitochondrial ROS overproduction went along with cell cycle arrest, cell proliferation slowness, and myocyte apoptosis increase. Using Mito-TEMPO for mitochondrial ROS elimination could effectively mitigate the above adverse reactions and significantly restore the proliferation potential of myoblasts. Moreover, we identified miR-365-3p, a miRNA that targeted SelT mRNA to inhibit myoblast proliferation by disrupting intracellular redox balance. The omics analysis results showed that Se deficiency led to the significant enrichment of "cell cycle", "oxidative stress response", and "oxidative phosphorylation" pathway genes. Finally, we proved that the effect of the miR-365-3p/SelT signaling axis on muscle development did exist in the chicken embryo stage. In summary, our findings revealed that miR-365-3p was involved in broiler skeletal muscle damage in Se deficiency by targeting SelT, and SelT, serving as an intracellular homeostasis guardian, resisted mitochondrial oxidative stress, and protected ATP generation, promoting myoblast proliferation and inhibiting apoptosis. This study provides an attractive target for the cultivated meat industry and regenerative medicine.


Assuntos
MicroRNAs , Selênio , Embrião de Galinha , Animais , Galinhas/genética , Galinhas/metabolismo , Espécies Reativas de Oxigênio , Selênio/farmacologia , MicroRNAs/genética , MicroRNAs/metabolismo , Dieta , Selenoproteínas/genética , Selenoproteínas/metabolismo , RNA Mensageiro , Proliferação de Células , Apoptose , Mioblastos/metabolismo , Trifosfato de Adenosina
11.
Nat Commun ; 14(1): 7994, 2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38042913

RESUMO

Aortic aneurysms, which may dissect or rupture acutely and be lethal, can be a part of multisystem disorders that have a heritable basis. We report four patients with deficiency of selenocysteine-containing proteins due to selenocysteine Insertion Sequence Binding Protein 2 (SECISBP2) mutations who show early-onset, progressive, aneurysmal dilatation of the ascending aorta due to cystic medial necrosis. Zebrafish and male mice with global or vascular smooth muscle cell (VSMC)-targeted disruption of Secisbp2 respectively show similar aortopathy. Aortas from patients and animal models exhibit raised cellular reactive oxygen species, oxidative DNA damage and VSMC apoptosis. Antioxidant exposure or chelation of iron prevents oxidative damage in patient's cells and aortopathy in the zebrafish model. Our observations suggest a key role for oxidative stress and cell death, including via ferroptosis, in mediating aortic degeneration.


Assuntos
Aneurisma Aórtico , Peixe-Zebra , Humanos , Masculino , Camundongos , Animais , Selenocisteína , Músculo Liso Vascular/metabolismo , Aneurisma Aórtico/genética , Aneurisma Aórtico/metabolismo , Selenoproteínas/genética , Miócitos de Músculo Liso/metabolismo
12.
Free Radic Biol Med ; 209(Pt 2): 381-393, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37923090

RESUMO

Selenium (Se) may help prevent breast cancer (BC) development. Owing to limited observational evidence, we investigated whether prediagnostic Se status and/or variants in the selenoprotein genes are associated with BC risk in a large European cohort. Se status was assessed by plasma measures of Se and its major circulating proteins, selenoprotein P (SELENOP) and glutathione peroxidase 3 (GPX3), in matched BC case-control pairs (2208 for SELENOP; 1785 for GPX3 and Se) nested within the European Prospective Investigation into Cancer and Nutrition (EPIC). Single nucleotide polymorphisms (SNPs, n = 452) in 55 selenoprotein and Se metabolic pathway genes and an additional 18 variants previously associated with Se concentrations were extracted from existing genotyping data within EPIC for 1564 case-control pairs. Multivariable-adjusted logistic regression models were used to calculate the odds ratios (ORs) and 95 % confidence intervals (CIs) of the association between Se status markers, SNP variants and BC risk. Overall, there was no statistically significant association of Se status with BC risk. However, higher GPX3 activity was associated with lower risk of premenopausal BC (4th versus 1st quartile, OR = 0.54, 95 % CI: 0.30-0.98, Ptrend = 0.013). While none of the genetic variant associations (P ≤ 0.05) retained significance after multiple testing correction, rs1004243 in the SELENOM selenoprotein gene and two SNPs in the related antioxidant TXN2 gene (rs4821494 and rs5750261) were associated with respective lower and higher risks of BC at a significance threshold of P ≤ 0.01. Fourteen SNPs in twelve Se pathway genes (P ≤ 0.01) in interaction with Se status were also associated with BC risk. Higher Se status does not appear to be associated with BC risk, although activity of the selenoenzyme GPX3 may be inversely associated with premenopausal BC risk, and SNPs in the Se pathway alone or in combination with suboptimal Se status may influence BC risk.


Assuntos
Neoplasias da Mama , Selênio , Humanos , Feminino , Neoplasias da Mama/epidemiologia , Neoplasias da Mama/genética , Estudos de Coortes , Estudos Prospectivos , Selenoproteínas/genética , Selenoproteína P/genética
13.
Trends Cancer ; 9(12): 1006-1018, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37716885

RESUMO

In the past two decades significant progress has been made in uncovering the biological function of selenium. Selenium, an essential trace element, is required for the biogenesis of selenocysteine which is then incorporated into selenoproteins. These selenoproteins have emerged as central regulators of cellular antioxidant capacity and maintenance of redox homeostasis. This review provides a comprehensive examination of the multifaceted functions of selenoproteins with a particular emphasis on their contributions to cellular antioxidant capacity. Additionally, we highlight the promising potential of targeting selenoproteins and the biogenesis of selenocysteine as avenues for therapeutic intervention in cancer. By understanding the intricate relationship between selenium, selenoproteins, and reactive oxygen species (ROS), insights can be gained to develop therapies that exploit the inherent vulnerabilities of cancer cells.


Assuntos
Neoplasias , Selênio , Humanos , Antioxidantes , Selenocisteína/metabolismo , Selenoproteínas/genética , Selenoproteínas/metabolismo , Oxirredução , RNA de Transferência , Homeostase , Neoplasias/genética
14.
Nucleic Acids Res ; 51(19): 10768-10781, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37739431

RESUMO

Translational readthrough of UGA stop codons by selenocysteine-specific tRNA (tRNASec) enables the synthesis of selenoproteins. Seryl-tRNA synthetase (SerRS) charges tRNASec with serine, which is modified into selenocysteine and delivered to the ribosome by a designated elongation factor (eEFSec in eukaryotes). Here we found that components of the human selenocysteine incorporation machinery (SerRS, tRNASec, and eEFSec) also increased translational readthrough of non-selenocysteine genes, including VEGFA, to create C-terminally extended isoforms. SerRS recognizes target mRNAs through a stem-loop structure that resembles the variable loop of its cognate tRNAs. This function of SerRS depends on both its enzymatic activity and a vertebrate-specific domain. Through eCLIP-seq, we identified additional SerRS-interacting mRNAs as potential readthrough genes. Moreover, SerRS overexpression was sufficient to reverse premature termination caused by a pathogenic nonsense mutation. Our findings expand the repertoire of selenoprotein biosynthesis machinery and suggest an avenue for therapeutic targeting of nonsense mutations using endogenous factors.


Assuntos
Biossíntese de Proteínas , Serina-tRNA Ligase , Humanos , Códon sem Sentido , Códon de Terminação , RNA Mensageiro/metabolismo , Selenocisteína/genética , Selenocisteína/metabolismo , Selenoproteínas/genética , Serina-tRNA Ligase/genética
15.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 45(4): 563-570, 2023 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-37654136

RESUMO

Objective To study the expression of selenoprotein genes in human immunodeficiency virus(HIV)infection and its mother-to-child transmission,so as to provide a theoretical basis for the prevention,diagnosis,and treatment of acquired immunodeficiency syndrome.Methods The dataset GSE4124 was downloaded from the Gene Expression Omnibus(GEO).Two groups of HIV-positive mothers(n=25)and HIV-negative mothers(n=20)were designed.HIV-positive mothers included a subset of transmitter(TR)mothers(n=11)and non-transmitter(NTR)mothers(n=14).Then,t-test was carried out to compare the expression levels of selenoprotein genes between the four groups(HIV-positive vs. HIV-negative,NTR vs. HIV-negative,TR vs. HIV-negative,TR vs. NTR).Univariate and multivariate Logistic regression were adopted to analyze the effects of differentially expressed genes on HIV infection and mother-to-child transmission.R software was used to establish a nomogram prediction model and evaluate the model performance.Results Compared with the HIV-negative group,HIV-positive,NTR,and TR groups had 8,5 and 8 down-regulated selenoprotein genes,respectively.Compared with the NTR group,the TR group had 4 down-regulated selenoprotein genes.Univariate Logistic regression analysis showed that abnormally high expression of GPX1,GPX3,GPX4,TXNRD1,TXNRD3,and SEPHS2 affected HIV infection and had no effect on mother-to-child transmission.The multivariate Logistic regression analysis showed that the abnormally high expression of TXNRD3(OR=0.032,95%CI=0.002-0.607,P=0.022)was positively correlated with HIV infection.As for the nomogram prediction model,the area under the receiver-operating characteristic curve for 1-year survival of HIV-infected patients was 0.840(95%CI=0.690-1.000),and that for 3-year survival of HIV-infected patients was 0.870(95%CI=0.730-1.000).Conclusions Multiple selenoprotein genes with down-regulated expression levels were involved in the regulation of HIV infection and mother-to-child transmission.The abnormal high expression of TXNRD3 was positively correlated with HIV infection.The findings provide new ideas for the prevention,diagnosis,and treatment of acquired immunodeficiency syndrome.


Assuntos
Síndrome de Imunodeficiência Adquirida , Infecções por HIV , Humanos , Feminino , Transmissão Vertical de Doenças Infecciosas , Nomogramas , Selenoproteínas/genética
16.
Sci Rep ; 13(1): 14733, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37679389

RESUMO

Clostridioides difficile infections (CDIs) are responsible for a significant number of antibiotic-associated diarrheal cases. The standard-of-care antibiotics for C. difficile are limited to fidaxomicin and vancomycin, with the recently obsolete metronidazole recommended if both are unavailable. No new antimicrobials have been approved for CDI since fidaxomicin in 2011, despite varying rates of treatment failure among all standard-of-care drugs. Drug repurposing is a rational strategy to generate new antimicrobials out of existing therapeutics approved for other indications. Auranofin is a gold-containing anti-rheumatic drug with antimicrobial activity against C. difficile and other microbes. In a previous report, our group hypothesized that inhibition of selenoprotein biosynthesis was auranofin's primary mechanism of action against C. difficile. However, in this study, we discovered that C. difficile mutants lacking selenoproteins are still just as sensitive to auranofin as their respective wild-type strains. Moreover, we found that selenite supplementation dampens the activity of auranofin against C. difficile regardless of the presence of selenoproteins, suggesting that selenite's neutralization of auranofin is not because of compensation for a chemically induced selenium deficiency. Our results clarify the findings of our original study and may aid drug repurposing efforts in discovering the compound's true mechanism of action against C. difficile.


Assuntos
Auranofina , Clostridioides difficile , Auranofina/farmacologia , Clostridioides , Fidaxomicina , Ácido Selenioso , Selenoproteínas/genética
17.
Poult Sci ; 102(11): 103053, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37716231

RESUMO

Skeletal muscle satellite cells (SMSCs), known as muscle stem cells, play an important role in muscle embryonic development, post-birth growth, and regeneration after injury. Selenoprotein K (SELENOK), an endoplasmic reticulum (ER) resident selenoprotein, is known to regulate calcium ion (Ca2+) flux and ER stress (ERS). SELENOK deficiency is involved in dietary selenium deficiency-induced muscle injury, but the regulatory mechanisms of SELENOK in SMSCs development remain poorly explored in chicken. Here, we established a SELENOK deficient model to explore the role of SELENOK in SMSCs. SELENOK knockdown inhibited SMSCs proliferation and differentiation by regulating the protein levels of paired box 7 (Pax7), myogenic factor 5 (Myf5), CyclinD1, myogenic differentiation (MyoD), and Myf6. Further analysis exhibited that SELENOK knockdown markedly activated the ERS signaling pathways, which ultimately induced apoptosis in SMSCs. SELENOK knockdown-induced ERS is related with ER Ca2+ ([Ca2+]ER) overload via decreasing the protein levels of STIM2, Orai1, palmitoylation of inositol 1,4,5-trisphosphate receptor 1 (IP3R1), phospholamban (PLN), and plasma membrane Ca2+-ATPase (PMCA) while increasing the protein levels of sarco/endoplasmic Ca2+-ATPase 1 (SERCA1) and Na+/Ca2+ exchanger 1 (NCX1). Moreover, thimerosal, an activator of IP3R1, reversed the overload of [Ca2+]ER, ERS, and subsequent apoptosis caused by SELENOK knockdown. These findings indicated that SELENOK knockdown triggered ERS driven by intracellular Ca2+ dyshomeostasis and further induced apoptosis, which ultimately inhibited SMSCs proliferation and differentiation.


Assuntos
Cálcio , Células Satélites de Músculo Esquelético , Animais , Cálcio/metabolismo , Células Satélites de Músculo Esquelético/metabolismo , Galinhas/metabolismo , Estresse do Retículo Endoplasmático , Cálcio da Dieta , Apoptose , Adenosina Trifosfatases , Selenoproteínas/genética , Selenoproteínas/metabolismo
18.
Proc Natl Acad Sci U S A ; 120(40): e2305961120, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37751556

RESUMO

α-lipoic acid (LA) is an essential cofactor for mitochondrial dehydrogenases and is required for cell growth, metabolic fuel production, and antioxidant defense. In vitro, LA binds copper (Cu) with high affinity and as an endogenous membrane permeable metabolite could be advantageous in mitigating the consequences of Cu overload in human diseases. We tested this hypothesis in 3T3-L1 preadipocytes with inactivated Cu transporter Atp7a; these cells accumulate Cu and show morphologic changes and mitochondria impairment. Treatment with LA corrected the morphology of Atp7a-/- cells similar to the Cu chelator bathocuproinedisulfonate (BCS) and improved mitochondria function; however, the mechanisms of LA and BCS action were different. Unlike BCS, LA did not decrease intracellular Cu but instead increased selenium levels that were low in Atp7a-/- cells. Proteome analysis confirmed distinct cell responses to these compounds and identified upregulation of selenoproteins as the major effect of LA on preadipocytes. Upregulation of selenoproteins was associated with an improved GSH:GSSG ratio in cellular compartments, which was lowered by elevated Cu, and reversal of protein oxidation. Thus, LA diminishes toxic effects of elevated Cu by improving cellular redox environment. We also show that selenium levels are decreased in tissues of a Wilson disease animal model, especially in the liver, making LA an attractive candidate for supplemental treatment of this disease.


Assuntos
Selênio , Ácido Tióctico , Animais , Humanos , Ácido Tióctico/farmacologia , Cobre , Selênio/farmacologia , Oxirredução , Selenoproteínas/genética
19.
J Transl Med ; 21(1): 658, 2023 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-37741974

RESUMO

INTRODUCTION: Low serum selenium and altered tumour RNA expression of certain selenoproteins are associated with a poor breast cancer prognosis. Selenoprotein expression stringently depends on selenium availability, hence circulating selenium may interact with tumour selenoprotein expression. However, there is no matched analysis to date. METHODS: This study included 1453 patients with newly diagnosed breast cancer from the multicentric prospective Sweden Cancerome Analysis Network - Breast study. Total serum selenium, selenoprotein P and glutathione peroxidase 3 were analysed at time of diagnosis. Bulk RNA-sequencing was conducted in matched tumour tissues. Fully adjusted Cox regression models with an interaction term were employed to detect dose-dependent interactions of circulating selenium with the associations of tumour selenoprotein mRNA expression and mortality. RESULTS: 237 deaths were recorded within ~ 9 years follow-up. All three serum selenium biomarkers correlated positively (p < 0.001). All selenoproteins except for GPX6 were expressed in tumour tissues. Single cell RNA-sequencing revealed a heterogeneous expression pattern in the tumour microenvironment. Circulating selenium correlated positively with tumour SELENOW and SELENON expression (p < 0.001). In fully adjusted models, the associations of DIO1, DIO3 and SELENOM with mortality were dose-dependently modified by serum selenium (p < 0.001, p = 0.020, p = 0.038, respectively). With increasing selenium, DIO1 and SELENOM associated with lower, whereas DIO3 expression associated with higher mortality. Association of DIO1 with lower mortality was only apparent in patients with high selenium [above median (70.36 µg/L)], and the HR (95%CI) for one-unit increase in log(FPKM + 1) was 0.70 (0.50-0.98). CONCLUSIONS: This first unbiased analysis of serum selenium with the breast cancer selenotranscriptome identified an effect-modification of selenium on the associations of DIO1, SELENOM, and DIO3 with prognosis. Selenium substitution in patients with DIO1-expressing tumours merits consideration to improve survival.


Assuntos
Neoplasias da Mama , Selênio , Humanos , Feminino , Selênio/metabolismo , Estudos Prospectivos , Neoplasias da Mama/genética , Selenoproteínas/genética , Selenoproteínas/metabolismo , RNA , Microambiente Tumoral
20.
Mol Carcinog ; 62(12): 1803-1816, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37555760

RESUMO

The levels of the SELENOF selenoprotein are dramatically reduced in prostate cancer compared to adjacent benign tissue and reducing SELENOF in prostate epithelial cells results in the acquisition of features of the transformed phenotype. It was hypothesized that the aberrant increase in the eiF4a3 translation factor, which has an established role in RNA splicing and the regulation of selenoprotein translation, contributes to the lower levels of SELENOF. Using the available databases, eIF4a3 messenger RNA (mRNA) levels are elevated in prostate cancer compared to normal tissue as is the hypomethylation of the corresponding gene. Using a prostate cancer tissue microarray, we established that eiF4a3 levels are higher in prostate cancer tissue. Ectopic expression of eIF4a3 in prostate cancer cells reduced SELENOF levels and attenuated the readthrough of the UGA codon using a specialized reporter construct designed to examine UGA decoding, with the opposite effects observed using eIF4a3 knock-down constructs. Direct binding of eIF4a3 to the regulatory regions of SELENOF mRNA was established with pull-down experiments. Lastly, we show that an eIF4a3 inhibitor, eIF4a3-IN-2, increases SELENOF levels, UGA readthrough, and reduces binding of eIF4a3 to the SELENOF mRNA 3'-UTR in exposed cells. These data establish eIF4a3 as a likely prostate cancer oncogene and a regulator of SELENOF translation.


Assuntos
Próstata , Neoplasias da Próstata , Masculino , Humanos , Próstata/metabolismo , Selenoproteínas/genética , Neoplasias da Próstata/genética , Códon de Terminação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...